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ABSTRACT 

Smoothed particle hydrodynamics (SPH) is a non-Monte Carlo free- 

Lagrangian method of computational fluid dynamics that has recently 

expanded in scope beyond its parent application of astrophysical 

simulations.  Modelling terrestrial flows involving boundaries is an 

important extension of the technique.  This thesis describes the 

application of SPH to model both compressible and incompressible flows 

involving boundaries. 

Simulations of shock wave reflection in a one-dimensional shock 

tube have been made.  Different boundary methods have been compared with 

regards to their ability to model a one-dimensional reflecting shock 

wave.  The simulations show that the introduction of imaginary particles 

appears to be the most effective method of boundary simulation for 

transient shock reflection.  Simulations also show that the choice of 

artificial diffusion treatment for best reflection is ambiguous. 

Incompressible flow has been modeled using several test problems. 

To model incompressible flow, modifications to the standard SPH 

equations are necessary.  An artificial compressibility technique is 

introduced through a fluid specific equation of state.  Real viscosity 

has been introduced.  Results are shown for three test cases: Couette 

flow, Stoke's first problem, and a shear driven cavity. 
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Chapter 1. INTRODUCTION 

Smoothed particle hydrodynamics (SPH) is a free-Lagrangian 

computational method introduced by Lucy [1], and Gingold and Monaghan 

[2].  This method was originally developed for the simulation of such 

astrophysical phenomena as binary star interactions [3], super nova 

explosions [4], and the origin of the moon [5-7].  Recently, more 

interest has centered on the terrestrial applications of SPH.  Libersky 

and Petschek [8] have adapted SPH to simulate high speed impacts of 

solid objects.  Several authors [9-11] have simulated unsteady gas- 

dynamic shock tube problems.  Henneken and Icke [12] have reproduced 

shock waves formed by steady supersonic flow impinging on a forward 

facing step.  Other applications include the modeling of volcanic ash 

flows [13], and simple free surface incompressible flows [14]. 

The basic premise of SPH is to model a continuous fluid as a 

discrete collection of interacting particles.  Each particle has 

characteristic properties of mass, velocity, position, and energy 

associated with it. These values are updated through a timestepping 

algorithm.  Smoothed particle hydrodynamics does not need a mesh or 

finite differences to compute spatial derivatives.  Derivatives are 

calculated through the use of a weighting kernel, with particles loosely 

viewed as interpolation points.  The kernel is a smoothing function with 

a smoothing length set such that the effects of a central particle just 

reach its nearest neighbors.  By use of a kernel, the mesh-tangling 

problems of grid-based Lagrangian codes are avoided. 
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Smoothed particle methods differ from Monte-Carlo methods because 

they do not use random number generation to determine the outcome of 

particle collisions or diffusion.  A benefit that SPH has in common with 

other explicit Lagrangian methods is that it is naturally suited for 

massively parallel computation.  An individual processor can be assigned 

to an individual particle.  As massively parallel machines become larger 

and more commonly used, this advantage should promote wider use of SPH. 

The primary objective of this thesis is to expand and evaluate SPH 

for situations involving solid boundaries.  Because astrophysical 

phenomena typically have no solid boundaries, this area has received 

little attention. 

The next chapter of this thesis introduces the SPH technique.  The 

third chapter reviews work on modeling compressible flows involving 

boundaries.  Reflected shock waves in a one-dimensional shock tube have 

been simulated.  Several different schemes have been considered for 

simulating the presence of solid reflective boundaries.  The effects of 

an alternative artificial diffusion treatment have also been examined. 

The fourth chapter reviews work in extending SPH to model incompressible 

flow.  This requires the use of an artificial compressibility technique. 

Real viscosity has been added to the equations of motion and a driven 

cavity has been simulated.  The final chapter concludes the thesis and 

make recommendations for further study. 



Chapter 2. FUNDAMENTALS 

2.1 Theory 

Smoothed particle hydrodynamics treats a fluid as a collection of 

particles; each having its own characteristic properties of velocity, 

energy, and mass.  Any function, F(r), can then be estimated using an 

integral interpolant, with the particles acting as interpolation points: 

<F(r)> = jF(r')W(r-r',h)dr' (1) 

with W(r-r',h) being the interpolation kernel (hereafter abbreviated as 

Wij).  If the particles are distributed in the domain with a number 

density n(r), then Equation (1) can be approximated by 

<F(r)> = E Fj/nj * WXj. (2) 

Here the summation is taken over all particles.  The number density can 

then be represented by use of the particles' characteristic mass and 

density by 

n(r5) = pCr^/mj. (3) 

Thus Equation (2) can be written as 

<F(r)> = 2 Fjm/pj * W1:). (4) 

The equations of motion may be derived from this basic relation. 



2.2 Equations of Motion 

2.2.1 Mass conservation 

Mass conservation is satisfied by direct substitution of p for F 

in Equation (4): 

Pi = Spjiiij/pj * Wij (5) 

or 

Pi = SnijWij. (6) 

An alternative approach for determining p  is through use of the Eulerian 

continuity equation: 

3p/3t + pV«v = 0. (?) 

The product of density and the velocity divergence is 

(pV«v)i = Vi«(piVi)-v1Vip1. (8) 

Applying Equation (4) yields 

(pVv)i = E(pv)jmj/pj ViWij - SviPjOij/pj VÄ-,.      (9) 

Reducing gives the following form for the divergence term 

(pV.v)i = ECVj-vOmjV-iWij. (10) 

The density can now be calculated from: 

dpi/dt = -SmjCvi-v^'ViWij. (H) 

With this method the density will only change when particles move 

relative to one another.  The advantage of using the divergence form 

(Eq. 11) in preference to the mass summation form (Eq. 6) manifests as a 

savings in CPU time.  All the subsequent governing equations can be 

solved using only the divergence of the kernel; the kernel itself needs 

not be calculated.  A disadvantage of the divergence form is that mass 

is not strictly conserved [15]. 
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2.2.2 Momentum equation 

The momentum equation for an inviscid fluid without body forces is 

dv/dt = -1/p * VP. (12) 

It is advantageous to write this equation in its symmetric form, so that 

linear and angular momentum are conserved exactly [15].  Thus, we write 

dv/dt = -V(P/p) - (P/p2)Vp. (13) 

Applying Equation (4) yields: 

dVi/dt =  -[E^/p^iVpj WH + S(Pi/Pi2)pjmj/pj VWij]. (14) 

Reducing and combining like  terms gives  the  final  form of the momentum 

equation. 

dvt/dt-  -Sm^Pi/Pi2 + Pj/pj
2)V1Wlj. (15) 

2.2.3 Internal energy equation 

The rate of change of internal energy is 

du/dt = -(P/p)V.v. (16) 

In symmetric form this equation is: 

du/dt = -V.(Pv/p) + vV(P/p). (17) 

Applying Equation (4) to the energy equation yields: 

dUi/dt = Smj*(Pj/pj
2)(vi-vj).ViWij. (18) 



2.3 Kernels 

The kernel needs to satisfy two restrictions: 

JV(r-r',h)dr' - 1 (19) 

and 

limh.>0 W(r-r'.h) - S(r-r'). (20) 

The kernel should also have continuous first and second derivatives. 

One obvious kernel is a gaussian curve; another is an exponential 

W - l/n3/2  exp(-(r-r')7h2) (21) 

where h is the smoothing length.  This curve has the appearance of a 

gaussian and satisfies the above requirements (Eqs. 19 and 20).  One 

problem with this form is that one particle interacts with all of the 

other particles in the domain (albeit extremely weakly with most).  This 

causes CPU time requirements to scale with the square of the number of 

particles. 

A more economical choice of a kernel is a weighting system that 

offers compact support.  Compact support limits one particle's 

interactions to a definite surrounding volume.  This allows the code to 

be written with linked lists by superimposing a grid over the particles 

which serves to locate neighboring particles.  The grid needs not 

conform to the precise problem geometry, nor is any information stored 

at nodal locations; thus no grid entanglements are produced.  The width 

of the grid cells is set such that a particle in one cell can only 

interact with particles in the immediately neighboring cells.  This 

technique [17,18] allows CPU time to scale proportionally with the 
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number of particles.  The compact kernel [19] used for this paper is 

defined by: 

(l-1.572+.7573)/(7rh)   0<7<1 

W(r,h) =    a/h« <i      (.25*(2-7)
3)/(7Th)     1<7<2       (22) 

0 7>2 

with 7 = distance/smoothing length, £ is the number of dimensions and a 

is the normalization constant.  In one, two, and three dimensions this 

constant is set to 2/3, 10/77T, and l/n  respectively.  The smoothing 

length, h, is generally taken to be twice the distance between 

particles. 

Another problem with the exponential form is that information can 

propagate over the entire computational domain in a single time step. 

For application of SPH to problems involving supersonic flows, the 

kernel can introduce errors because downstream values should have no 

effect on the flow upstream of the shocks.  In SPH the kernel allows 

particles both downstream and upstream to be used in calculating shock 

values.  A compact support formulation of the kernel can help reduce the 

downstream influence. 

2.4 Artificial Diffusion 

Artificial diffusion is required to dampen nonphysical, high- 

frequency oscillations that are inherent to Lagrangian simulations. 

Previously, artificial diffusion has been implemented in SPH through 

various artificial viscosity formulations. 



2.4.1 Monaghan-Gingold artificial viscosity 

Monaghan and Gingold [9] have formed the most widely used form for 

artificial viscosity (hereafter described as M-G viscosity) which is 

implemented by rewriting the momentum equation as: 

dvj/dt = -an^CPi/piM-Pj/p^IIi^ViWij.-       (23) 

where 
■(aCij/iij+jS/iij'VPij        if VijTijX) 

ntl      -    1 (24) 
0 if Vij«rij<0. 

Here 

•/iir (hvlj.rij)/(rij
2+r7

2), (25) 

and dj is the local speed of sound.  Artificial viscosity is introduced 

only when particles are approaching.  The constants a,ß,   and r?2 are 

generally set equal to 1, 2, and .Olh2; respectively. 

2.4.2 Flux corrected transport 

An alternative implementation of artificial diffusion, previously 

unused in SPH simulations, is flux corrected transport [20] (FCT).  Flux 

corrected transport is a two-step process in which diffusion is applied 

everywhere in the first (predictor) stage to eliminate high frequency 

oscillations, and anti-diffusion is selectively added near 

discontinuities in the second (corrector) stage to reduce smearing.  The 

criteria for elimination is determined by the relative location of the 

particle with respect to steep gradients of density.  The diffusion is 

applied on an individual particle basis and whenever a fluid quantity is 

added to at one point, it is subtracted from another.  Therefore, there 

is no net gain or loss incurred on the system as a whole. The general 

algorithm, following Book et al. [21], is: 



+3/2   ) 

1. Generate diffusive fluxes: 

f j+1/2 = ^j+1/2 (ci"j+i ~ cijn) 

2. Generate anti-diffusive  fluxes: 

fad {,-r** n**   \ 
j+1/2    -    P)-H/2kH     j+1'4     j-> 

3. Diffuse solution: 

4       j    —    4J     "'"I-j+1/2   'r   j-1/2 

4. Calculate first differences  of q/": 

Aq      = qj+1   -q3 

5. Limit antidiffusive fluxes: 

S - sign of  (fj+i/2"a) 

fj+1/2»d = S  maxtO.minlSAqH-!//",   |f-j+1/2
aa| ,   SAqj 

6. Antidiffuse solution: 

1j ~    <3j r j+1/2     +I j-1/2 

The diffusion, v,   and antidiffusion, ß,   coefficients are dependent on 

the computational scheme.  For SPH, v  and y,  were optimized to be 0.5 and 

0.25 respectively. 

2.5 Time Stepping 

A second order Runge-Kutta scheme was used to march the transport 

equations in time.  For simulations involving FCT the diffusion and 

anti-diffusion were calculated before and after the timestep (no 

calculations were made at the intermediate step).  Because SPH is an 

explicit scheme, there is a stability constraint placed on the size of 

the time step.  For the shock tube problem, Monaghan and Gingold [9] 

suggested a timestep limit of At < 0.3h/Ci, where ct is the local speed 
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of sound for the particle.  All simulations were run with a time step 

under this limit. 

2.6 Boundary Conditions 

The treatment of rigid boundaries has received relatively little 

attention in flow simulations using SPH.  There are several potential 

schemes that might be considered for implementing a reflecting boundary: 

imaginary particles, repulsive forces, immobile particles, or boundary 

modifications to the equations of motion. 

Libersky and Petschek [8] used imaginary particles to model the 

impact of an iron rod with a rigid surface.  The imaginary particle 

scheme works by placing extra particles along the outside edge of the 

boundary.  For every "real" particle within a distance 2h of the 

boundary, an extra particle is placed symmetrically on the opposite side 

of the boundary.  These particles have the same density and pressure, 

and a velocity opposite that of their corresponding real particle 

counterpart. 

Because the imaginary particles must be included in the 

computation, this technique requires extra CPU time and memory. 

Extension to multi-dimensional simulations may create particle tracking 

problems.  Instead of carrying the extra particles through the 

summation, it is possible to implement the boundaries using a series of 

logical if-then statements.  When a real particle come within a 

distance, 2h, of the boundary, a series of if-then steps can be used to 

determine if additional calculations need to be made.  This eliminates 
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the need to keep track of imaginary particles, allowing for easier 

multi-dimensional coding, and reduced memory and CPU requirements. 

Monaghan [14] has used the repulsive force technique for simple 

free-surface incompressible flow simulations.  Nagasawa and Kuwahara 

[13] have used this technique for modeling volcanic ash flows as well. 

The repulsive force technique works by introducing an interparticle 

force between boundary particles and the approaching fluid particles. 

If a particle moves within a preset distance, a repulsive force is added 

to the momentum summation.  This force can be modeled as a Lennard-Jones 

type intermolecular force [13,14]: 

"^((x/R*)4 - (x/R*)2)/^     if x<Rb 
f(r) = (26) 

0 if x>Rb 

where \  is usually set equal to the initial particle separation, Rt is 

the distance to the boundary, and KXJ is determined by the initial 

conditions. Alternately, the repulsive force can be modeled by a simple 

spring force: 

(  «a(x-Rb)
2       if x<Rb 

f(r) =  J (27) 
[ 0 if x>Rb 

where x  is the relaxed spring distance (taken to be the initial particle 

separation), and /c, is the spring force constant which is determined by 

the initial conditions.  Since this method does not involve extra 

particles, except for those used to outline the boundary, there are only 

modest memory requirements. 

The immobile particle, or infinite inertia, boundary treatment 

involves placing stationary particles along the boundaries.  These 

particles are included in the summations, and after each iteration their 
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velocities are reset to zero.  This technique seems most applicable for 

inactive boundaries in which there are no new forces being applied to 

the boundary.  Campbell [16] showed that in certain simulations where 

the boundary pressure is known, boundaries can be implemented by 

modification of the equations of motion.  This technique works for 

problems involving a fluid being driven by an external force (such as 

piston type or bullet/gun barrel simulations). 
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Chapter 3. COMPRESSIBLE FLOW 

3.1 The Test Problem 

One of the vehicles for testing the boundary and artificial 

diffusion treatments is a close-ended, one-dimensional, adiabatic shock 

tube.  This problem involves simulating the expansion and shock waves 

generated when a wall separating high and low pressure regions of a 

perfect gas is suddenly removed.  Unlike previous SPH work with the 

shock tube problem, simulations were continued until after the shock 

wave reflected off the tube end-walls.  Inviscid, one-dimensional theory 

provides an exact solution that is valid until the reflected wave 

impinges upon the following contact surface.  The model shock tube is 

1.2 meters long and has an initial pressure ratio of four to one.  The 

SPH simulation used 450 particles with a width set equal to the twice 

the initial separation on the low density side.  All simulations used 

the imaginary particle technique for the boundary on the rarefaction end 

of the tube. 

3.2 Discussion 

3.2.1 Pre-reflection 

Figure 1 shows plots of density, pressure, temperature, and 

velocity in the model shock tube 0.9 milliseconds into the simulation, 

but before reflection.  This simulation used the M-G form of artificial 

viscosity.  The SPH simulation tracks the location and magnitude of the 

expansion and compression fronts well. Notable errors include the blip 

in the pressure plot, an overprediction in the velocity rarefaction 
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wave, and smoothing of the shock wave fronts.  Monaghan and Gingold [9] 

attribute the pressure blip to the influence of the contact 

discontinuity.  The smoothing of the shock fronts (over a distance 3h) 

is due to the application of artificial diffusion.  These results show 

that our simulation matches previous SPH work [9-11].  The simulation 

underpredicts the temperature immediately after the shock.  Comparisons 

against other temperature predictions in the SPH literature cannot be 

made because these others were either run isothermally [11] or did not 

provide temperature results [9,10]. 

3.2.2 Artificial diffusion 

The purpose of adding artificial diffusion is to damp out high 

frequency oscillations that form in the presence of flow 

discontinuities, like shock waves.  While this is common practice in 

Eulerian simulations, the Lagrangian nature of SPH makes it even more 

necessary.  Previous SPH shock tube work [9,11] has tested a variety of 

artificial viscosity forms, and concluded that the Monaghan-Gingold [9] 

(M-G) viscosity (used to produce the Figure 1 results) leads to the most 

accurate results for the adiabatic shock tube problem. 

Figure 2 shows plots of the pre-impact shock waves using flux 

corrected transport (FCT).  Comparison with Figure 1 shows that both 

artificial diffusion techniques prevent high frequency oscillations from 

forming.  Flux corrected transport reduces the errors seen in the 

rarefaction overprediction and also reduces smoothing of the shock 

fronts. 
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Figure 3 shows the enlarged velocity profiles predicted using M-G 

viscosity and FCT, where FCT more accurately reproduces the shock front. 

Another criteria for comparison of the two artificial diffusion schemes 

is the CPU time required for calculations.  An artificial viscosity 

treatment requires a summation over nearest neighbors, while FCT 

requires only a loop over the particles.  Code using FCT ran 

approximately 15% faster than identical code using M-G viscosity. 

3.2.3 Reflected shock 

Four different end wall techniques were considered for the shock 

tube end-walls.  Of these, two methods either failed or were 

inappropriate for the shock tube simulation.  Campbell's [16] method of 

introducing boundary conditions into the equations of motion was not 

appropriate for the shock tube problem because the wall pressure is not 

known.  Simulations using immobile particles failed because the momentum 

of the computational particles was sufficient to enable them to cross 

over the tube end walls. 

Figures 4 and 5 shows density, velocity, temperature and pressure 

after reflection predicted using the imaginary particle method.  The 

reflective boundary was modeled by placing fifteen extra particles on 

the opposite side of the tube end.  This amount was determined by the 

number of real particles that came within 2h of the boundary during the 

simulation.  Figure 4 was obtained using M-G viscosity, and Figure 5 

using FCT artificial diffusion methods. Flux corrected transport 

produced nonphysical oscillations behind the reflected shock wave. 

These oscillations were stable and traveled with the reflected shock 
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wave.  Monaghan-Gingold's viscosity produced no oscillations, however 

the reflected density shock front was more diffused.  This is attributed 

to the reflected shock propagating into a region with higher density. 

There are more downstream particles within the 2h smoothing length from 

the shock front than were in the corresponding region for the pre- 

reflection shock wave.  The imaginary particle method compares well with 

the exact solution. 

Both the Lennard-Jones and spring repulsive force schemes produced 

essentially indistinguishable results.  Both schemes experienced 

particle crossing difficulties.  Figures 6 and 7 show density, velocity, 

temperature, and pressure predictions obtained using the spring force 

method for M-G and FCT treatments, respectively.  Flux corrected 

transport again shows a tendency to produce nonphysical oscillations on 

the trailing edge of the reflected shock waves.  The velocity plots of 

both figures show instabilities behind the reflected shock wave.  This 

is due to particles crossing each other (though not the end-wall) near 

the edge of the applied force.  The instabilities eventually damp out as 

the reflected wave propagates away from the tube wall. 

The density, temperature, and pressure plots show a shortcoming of 

the repulsive force technique;  a drop in value along the boundary edge. 

This is caused by the particles near the tube end missing part of their 

summation.  The spurious pressure and density drops cause an initial 

velocity toward the tube end. While the repulsive force acts to prevent 

this initial acceleration, it is does not effect the values of the 

density or pressure, and they remain underpredicted. An attempt was 

made to use the alternative conservation of mass equation (Eq. 11), as 
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this method calculates the density using the velocity divergence instead 

of particle mass summation.  Simulations showed that after the 

reflection there still remained a drop in the expected value because of 

the missing parts of the divergence summation. 

3.3 Conclusion 

Conclusions about the relative performance of SPH simulations of 

reflected Shockwaves using artificial diffusion schemes are somewhat 

ambiguous.  Monaghan and Gingold's viscosity [9] and flux corrected 

transport [20] have been compared.  Though FCT reproduces the sharpest 

shock fronts, it appears less stable after the reflection and more 

limited in application than M-G viscosity.  However, post-reflection 

simulations using M-G viscosity produce more heavily smeared shock 

waves. 

Conclusions pertaining to different boundary treatments are less 

ambiguous.  The most accurate simulations of the reflected shock were 

made using the imaginary particle scheme; although CPU time, memory 

requirements, and coding complications were greater than for other 

candidate schemes.  Coding techniques can reduce the extra CPU and 

memory requirements for applications in higher dimensions.  The 

repulsive force technique is the easiest to code and requires less CPU 

time, however accuracy is sacrificed and particles may cross. Neither 

the immobile particle technique, nor Campbell's [16] pressure 

modification boundary technique were suitable for this test case. 
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Chapter 4: INCOMPRESSIBLE FLOW 

4.1 Introduction 

The emphasis of the previous chapters was on developing the SPH 

formalism and applying the method to one-dimensional, compressible, 

inviscid flow.  The object of this chapter is to extend the SPH method 

to model two-dimensional, viscous, incompressible flow.  The test 

problem used to accomplish this objective are the shear driven cavity, 

Couette flow, and Stoke's first problem. 

4.2 Modifications 

The standard SPH technique for solving the equations of motion 

utilize summations, based on particle locations and a weighting kernel, 

to determine the density, velocity and internal energy.  The pressure is 

a thermodynamic property generally obtained from the density, internal 

energy, and an appropriate equation of state. 

The governing equations for incompressible viscous flow are: 

3p/3t|artlflcllll + V.(pv) = 0 (28) 

dpv/dt = -V«P + pE' (29) 

When modeling incompressible flow, the standard SPH procedure must 

be modified because density no longer effects pressure through an 

equation of state.  This modification is introduced by using an 

artificial compressibility formulation. 
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4.2.1 Artificial compressibility 

The basis for the artificial compressibility scheme lies in 

introducing a time derivative of pressure.  This term can be 

incorporated into an equation of state.  The following equation of state 

for water has been applied by Monaghan [14] for modeling free surface 

flows: 

P = B((p/po)r-D, (3°) 

with T = 7.415.  The constant B is simulation specific, and depends on 

the maximum fluid velocity.  In the artificial incompressibility 

technique, the speed of sound is defined as being very much larger than 

the maximum possible speed of the bulk flow (c > 0.1*Vmax).  This puts a 

limit on the maximum change in the density values.  The constant B is 

used to keep the density changes to within approximately 5% of the 

original values.  In these simulations B was defined as follows: 

B = (VM*/0.1)
2*po/7'. (3D 

Where 7' is the fluid's specific heat ratio.  This technique models an 

incompressible fluid as slightly compressible. 

4.2.2 Viscous term 

A common requirement for all the previously cited SPH formulations 

is to include an artificial viscosity component to the dampen the high 

frequency oscillations inherent to Lagrangian simulation techniques. 

However, in simulating viscous, recirculating flows of engineering 

interest, true viscosity must be used. 

The viscous term of the Eulerian momentum equation is written as 

II' = 1/p  V«(i/Vv). (31) 
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While this can be substituted directly into the SPH formulation, it has 

been shown [22,23] that the second derivative is extremely sensitive to 

particle disorder.  To avoid this problem in the heat diffusion 

equation, an integral approximation was used to model the second 

derivative [22,23].  Because of the direct analogy between heat 

diffusion and viscous momentum diffusion, this technique has been 

applied here for the viscous term.  Through application of this 

technique, the viscosity term becomes: 

n' -  -Smj*(2i/'(vi-vj)(rlj.VjWij)) / (Pi^r^+r?
2) (32) 

where v'  is the kinematic viscosity, and pi:) is the averaged density. 

4.3 Boundary Treatment 

Using the results from the previous chapter as a guide, boundaries 

were simulated using a hybrid scheme involving both immobile particles 

and repulsive forces.  Immobile particles were placed surrounding the 

required geometry with the boundary particles exerting the repulsive 

force.  The hybrid technique was used to prevent the near boundary 

density dropoffs intrinsic to the repulsive force treatment while 

maintaining the ease and minimum CPU time requirements characteristic of 

the repulsive force technique.  Three layers of immobile particles were 

necessary to provide the correct values for the edge particles. The 

repulsive force was modeled using the Lennard-Jones type force (Eqn. 26) 

and was exerted solely by the first layer of immobile particles. 
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4.4 The Test Problems 

The first test problem for the viscous, incompressible formulation 

was Couette flow.  Couette flow is steady viscous flow between two 

infinitely long parallel plates with the lower plate stationary and the 

top plate moving at a constant speed.  The fully developed solution 

yields a linear velocity profile.  This test problem was used to 

determine if the viscous boundary conditions were being accurately 

modeled. 

Stoke's first problem was the next test case.  This problem 

involves the transient flow development for a fluid near a suddenly 

moving infinitely long plate.  Results are compared to the exact 

solution.  This problem was used to determine if diffusion is being 

properly modeled in the transient case, as pressure gradients do not 

contribute significantly to the fluid motion in this problem. 

The third test problem is the classic shear driven cavity flow. 

With this problem, the moving top of a closed square cavity produces a 

recirculation pattern in the fluid.  A solution was obtained for a 

Reynolds number (UtopH/V) of 10.  Results are compared with solutions 

obtained from the Eulerian code described by Miller and Schmidt [24]. 

This test problem tests all three major areas of interest: the boundary 

conditions, the viscous diffusion, and the artificial compressibility. 

In all test problems the transient equations were stepped in time 

with the same Runge-Kutta scheme described previously.  No artificial 

diffusion has been included in any of the simulations.  The test 

problems were simulated with 676 particles. Of these, 277 particles 
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were used for the boundaries, and were not independently cycled through 

the summations. 

4.5 Discussion 

Figure 8 is a plot of the velocity profile for the Couette flow 

simulation.  This result matches with the expected solution (constant 

slope).  The velocity profile was taken at a time well after the steady 

state solution was achieved.  This indicates that the hybrid boundary 

condition is accurately modeling the moving surface, and the viscous 

effects are being properly modeled for the fully developed state. 

Figure 9 is a plot of the transient velocity profile for Stoke's 

first problem.  The SPH solution is compared with a similarity solution 

[25].  Smoothed particle hydrodynamics underpredicts the exact solution 

by approximately 10 percent for the particle closest to the boundary. 

Particles further from the boundary show better comparisons with the 

expected solution.  It is expected that the relatively high error for 

the particle nearest the boundary can be diminished by the addition of 

more particles near the moving plate. 

Figure 10 shows the steady-state streamlines for the particles in 

the driven cavity flow problem.  Figure 11 shows the actual particle 

locations for the same time (120 seconds).  These plots show that SPH 

reproduces the expected physics of the problem and the particles 

maintain an essentially equal separation.  A noticeable error lies in 

the upper right corner of the cavity in figure 11. An area depleted of 

particles form soon after the simulation is started.  Figures 12 and 13 

show the horizontal and vertical velocity profile for the SPH 
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Figure 10: Particle streaklines at 120.0 seconds for a Reynold's number 

of 10 
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Figure 11: Particle distribution at 120.0 seconds for the driven cavity 
with a Reynold's number of 10. 
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Figure 12: Velocity profile along vertical centerline for the driven 
cavity with a Reynold's number of 10. 



DRIVEN CAVITY 

35 

0.25 

O 
-M 
Z) 

> 

Ü o 
_J 
Ld 
> 
>- 

0.00 

-0.25-1 
0.00 0.25 0.50 

X POSITION 
0.75 1.00 

Figure 13: Velocity profile along horizontal centerline for Reynold's 
number of 10. 



36 

Simulation, respectively.  The SPH solutions (dashed lines), are 

compared with the Eularian solutions of Miller and Schmidt [24] (solid 

lines).  Since SPH is a gridless technique, interpolation was necessary 

to determine the velocity profile.  Both plots show an underprediction 

in the velocity values.  Because the Couette flow and Stoke's first 

problem simulations compared well with theory, the discrepancy in the 

driven cavity simulation is not attributed to the viscous stress or the 

no-slip boundary condition. Rather, the error is attributed to the 

occurrence of the particle depletion regions.  It is expected that with 

the addition of more particles the solution will converge closer to the 

expected result. 

4.6 Conclusions 

Conclusions regarding the SPH treatment of incompressible, viscous 

flows are encouraging.  Smoothed particle hydrodynamics successfully 

treats the Couette flow and Stoke's first problem.  This indicates that 

both the viscous stress and the no-slip boundary are being properly 

modeled.  The driven cavity underpredicts the expected solution and the 

error is attributed to a loss in resolution due to low particle areas. 
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Chapter 5.  CONCLUSIONS/RECOMMENDATIONS 

Smoothed particle hydrodynamics has been shown to have the 

potential to accurately model flows beyond its original astrophysical 

applications.  Boundaries have been implemented successfully through a 

variety of techniques.  The final choice of boundary technique, 

ultimately lies in the memory and CPU requirements of the user.  Flux 

corrected transport can be introduced into the SPH formulation and it 

has advantages and disadvantages. 

Smoothed particle hydrodynamics has been shown to have great 

potential in modeling incompressible flow.  The artificial 

compressibility treatment and the introduction of true viscosity 

reproduce the physics of the test problems, though not to a desirable 

accuracy in the driven cavity.  The area of error has been determined to 

be a loss of resolution due to too few particles. 

Recommendations for further study include: application of the 

artificial diffusion technique, flux corrected transport, to higher 

dimensions; finding the optimum technique for introducing viscosity; 

introducing particles in depleted regions; and extending the technique 

to modeling multi-fluid flows. 
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